Page 129 - 9. SINIF MATEMATİK FAVORİ DEFTERİM
P. 129

4. Ünite: Üçgenler                                                         ETKİNLİK DEFTERİ


            17.    İç ve Dış Açıortay Teoremi

            Etkinlik  Aşağıda verilen üçgenlerde istenen kenar uzunluklarını bulunuz.



                                A
             1                                                    4                      A
                                                                                            3
                                                                                                D
                            6         9                                            7
                                                                                              3
                                                                              B                       C
                         B    4   D    x    C                                           11     K  4
                                                                                       7

                                                                 [BD] açıortay,  |AB| = 7 cm |AD|= 3 cm,  |BC| = 11 cm
               [AD] açıortay, |AB| = 6 cm, |BD| = 4 cm,  |AC| = 9 cm  |DC| =   5
                               6  9
                                   =        x = 6
                               4  x                               DKC üçgeninde, (3 - 4 - 5) özel üçgeninden |DC| = 5'tir.





                                                                                    A
             2               A                                    5                      3
                                   6
                          6             E                                         6        D
                                 .        4                                              k    6
                                                                                     2k  E
                        B        D           C                                 B                 C
                                                                                        12


                                  |BD|     3                    [BD] ve [AE] açıortay
            |AE| = 6 cm, |EC| = 4 cm      =
                                  |DC|     5                    |BE| = 2  .  |DE|, |AD| = 3 cm, |BC| = 12 cm,  Ç (A¿BC) =  27 cm
                A¿BE ikizkenardır.     6    =   10     ⇒    |BD|   =  3     |AB| = 6 cm olur. BD açıortay ile;  6   =   12    |DC| = 6 cm
                                |BD|  |DC|    |DC|   5                                       3   |DC|
                                                                            Ç(A¿BC) = 12 + 6 + 6 + 3 = 27 cm




                               A
             3                                                    6                 A
                             a
                           D         8                                          4k      3k
                        7 - a    x
                         B                 C
                                  6                                           B   8  E 6  C  x    D


           [DC] açıortay |AB| = 7 cm, |AC| = 8 cm , |BC| = 6 cm   [AE] iç açıortay, [AD] dış açıortay,|BE| = 8 cm, |EC| = 6 cm,
           |DC| =    6                                          |CD| =   42
                     6  =  8  →  a =  4 x =  8 6 43 ⋅  =  6                    3k   =   4k      ise   x = 42
                                         ⋅-
                   7a    a                                                     x    14 + x
                     -


                                                                            Markaj Yayınları / 9. Sınıf Matematik
                                         MARKAJ YAYINLARI                                                     129
   124   125   126   127   128   129   130   131   132   133   134